0
Руб. Товаров в корзине на сумму

Вернуться в магазин

0
Руб. Товаров в корзине на сумму

Вернуться в магазин

Униконс   
 
 
 

Пектины

 

   Пектины являются наиболее известными представителями гете-рогликанов высших растений.

   Пектинами-Е440 (pektos в переводе с греческого — свернувшийся, замерзший) называется труппа высокомолекулярных гетерогдика-нов, входящих наряду с целлюлозой, гемицеллюлозой и лигнином в состав клеточных стенок и межклеточных образований высших растений, а также присутствующих в растительных соках некоторых из них. Пектины локализованы в первичной клеточной стенке и через боковые цепочки соединены с волокнами целлюлозы и гемицеллю-лозами. По химической природе пектины представляют собой гетеро-полисахариды, основу которых составляют рамногалактуронаны Главную цепь полимерной молекулы образуют производные полига-лактуроновой (пектовой) кислоты (полиурониды), в которой остатки D-галактуроновой кислоты связаны 1,4-α-гликозидной связью. Основная цепочка полигалактуроновой кислоты в растворе имеет вид спирали, содержащей три молекулы галактуроновой кислоты в одном витке В цепь полигалактуроновых кислот неравномерно через 1,2-α-гликозидную связь включаются молекулы L-рамнозы (6-дезокси-L-маннопиранозы), что придает полимерной молекуле зигзагообразный характер.

   Часть карбоксильных групп полигалактуроновой кислоты обычно этерифицирована метанолом (пектиновая кислота), а часть вторичных спиртовых групп (С2 и С3) может быть ацетилирована. Молекулы пектинов могут содержать от нескольких сотен до тысячи мономерных остатков, что соответствует средней молекулярной массе от 50 до 150 тыс.

   Соли пектовой кислоты получили название пектаты, пектиновой — пектинаты. Гомогенную структуру пектиновой цепи, кроме рамнозы, нарушают также боковые цепочки нейтральных Сахаров, в построении которых участвуют галактоза, арабиноза и ксилоза.

   Различия пектиновых веществ обусловлены разветвленностью полимерной цепи, содержанием в ней полигалактуроновой кислоты, разнообразием моносахаридного состава боковых цепей, состоянием карбоксильных (частично метилированы) и вторичных спиртовых (частично ацетилированы) групп, а также характером распределения карбоксильных групп вдоль полимерной молекулы Указанные выше особенности строения пектинов позволяют их молекулам связывать воду, образовывать гели и взаимодействовать с катионами металлов и белками. Они играют важную роль в физиологических процессах, участвуя в водном и ионном обмене Эти же свойства обусловливают широкое применение пектинов в пищевой промышленности.

   В клетках растений пектиновые вещества прочно связаны с другими соединениями (целлюлоза, гемицеллюлоза, лигнин), участвующими в построении клеточных структур, и не могут быть извлечены водной экстракцией. Такая нерастворимая в воде форма получила название протопектин. При созревании или тепловой обработке фруктов и овощей протопектин превращается в растворимый пектин. В промышленности пектин получают кислотным или ферментативным гидролизом — обменной реакцией между водой и веществом (в данном случае пектинсодержащим материалом), которая сопровождается гидролитическим расщеплением реакционного - собных химических связей.

   Подбираются такие условия, при которых гидролизуются глико-зидные связи, соединяющие пектиновые молекулы с целлюлозой, и не затрагиваются более прочные гликозидные связи в полимерной пектиновой молекуле, а также сложноэфирные связи в этерифициро-ванных карбоксильных группах.

   Технологический процесс включает от 4 до 7 этапов, основным из которых является гидролиз протопектина, сопровождающийся экстракцией его из растительного сырья. В классических способах гидролиз проводят растворами минеральных кислот (НС1, H2SO4, HNO3, Н3РО4) при рН менее 2 и температуре около 85°С в течение 2—2,5 ч При этом молекулы рамногалактуронанов переходят в раствор, откуда после очистки и концентрирования их извлекают различными технологическими приемами, например осаждением из этанола. Осажденный пектин сушат, измельчают и стандартизируют, добавляя сахар или ретардаторсоль одновалентного катиона и пищевой кислоты (молочной, винной, лимонной), замедляющие процесс гелеобразования.

   В некоторых случаях степень этерификации выделенных пектинов понижают специально, для чего концентрированный жидкий экстракт подвергают контролируемой деэтерификации кислотным, щелочным или ферментативным (с помощью фермента пектинэстера-зы) способом Наиболее быстрым является способ щелочной деэтерификации под действием гидроксида натрия или аммиака (процесс аммонолиза) Пектины, деэтерифицированные путем аммонолиза и представляющие собой амиды пектиновых кислот, получили название амидированных и выделены в Codex Alimentanus в отдельную подгруппу (Е440b). В соответствии с официальными требованиями ФАО—ВОЗ степень амидирования таких пектинов не должна превышать 25 %.

   В зависимости от степени этерификации все пектины условно разделяют на две подгруппы.

  • высокоэтерифицированные — степень этерификации более 50 %,
  • низкоэтерифицированныестепень этерификации менее 50 %.

   В настоящее время выпускают несколько видов пектинов, выделяемых из различного сырья и отличающихся по составу и функциональным свойствам яблочный, цитрусовый, свекловичный, пектин из корзинок подсолнечника, а также комбинированные пектины из смешанного сырья Строение молекул пектинов, выделяемых из различных растительных объектов, имеет свои отличительные особенности по молекулярной массе, степени этерификации, наличию ацетилированных гидроксильных групп.

  

   Особенности различных пектинов

Вин пектина

Характеристика

по степени этерификации

по молекулярной массе

по наличию ацетильных групп

Яблочный

Высокоэтерифицированный

Высокомолекулярный

Неацетилированрованный

Цитрусовый

То же

Низкомолекулярный

То же

Свекловичный

Низкоэтерифицированный

То же

Метилированный

Подсолнечниковый

То же

Высокомолекулярный

То же

 

   Указанные пектины отличаются также характером распределения карбоксильных групп по длине пектиновой молекулы: в яблочных пектинах это распределение равномерное, а, например, в цитрусовых — нет.

   Особенности химического строения пектиновых молекул, в частности, степень этерификации, определяют различия их физико-химических свойств, основными среди которых являются растворимость, гелеобразующая и комплексообразующая способность.

   Растворимость пектинов в воде повышается с увеличением степени этерификации их молекул и уменьшением молекулярной массы. Пектовая кислота, в молекуле которой нет этерифицированных карбоксильных групп, в воде нерастворима. При комнатной температуре в условиях интенсивного перемешивания в 100 мл воды растворяется от 4 до 8 г пектина, при температуре 60—80°С — около 10 г, т. е. максимальная концентрация водных растворов пектина может составлять 10 %. Растворимость повышается в присутствии Сахаров. Из-за наличия в пектиновых молекулах диссоциирующих свободных карбоксильных групп их водные растворы имеют кислую реакцию (рН около 3,5).

   Главное свойство, на котором основано применение пектинов в пищевых технологиях, — гелеобразующая способность.

   Гелевая структура растворов пектинов образуется в результате взаимодействия пектиновых молекул между собой и зависит от особенностей строения молекулы — молекулярной массы, степени этерификации, характера распределения карбоксильных групп. Кроме того, на процесс гелеобразования влияют температура, рН среды и содержание дегидратирующих веществ.

   Формирование пространственной структуры геля может происходить двумя путями:

  • за счет изменения сил электростатического отталкивания пектиновых молекул в присутствии дегидратирующих веществ (сахарозы) в кислой среде (сахарно-кислотное гелеобразование);
  • при участии ионов поливалентных металлов.

   Тип ассоциации пектиновых молекул определяется степенью эте-рификации. Высокоэтерифицированные пектины образуют гели в присутствии кислоты (рН 3,1—3,5) при содержании сухих веществ (сахарозы) не менее 65 %, низкоэтерифицированные — в присутствии ионов поливалентных металлов, например кальция, независимо от содержания сахарозы в широком диапазоне рН (от 2,5 до 6,5). Пектины высокой степени этерификации образуют высокоэластичные гели, имеющие тенденцию к возвращению формы в исходное состояние после ее изменения при механическом сдвиге.

   Пектины низкой степени этерификации в зависимости от концентрации ионов кальция могут давать различные по консистенции гели — от высоковязких (не восстанавливающих исходную форму после деформирования) до высокоэластичных.

   Комплексообразующая способность (образование циклических комплексов поливалентных металлов) различных пектинов зависит от содержания свободных карбоксильных групп, т. е. степени этерификации пектиновых молекул, и не зависит от их молекулярной массы.

   Способность пектиновых молекул связывать поливалентные катионы увеличивается при снижении степени их этерификации и повышении степени диссоциации свободных карбоксильных групп (т. е. при повышении рН среды), а по отношению к различным катионам изменяется в ряду (Paskins-Hurlburt et al., 1977)

   Mg < Mn < Сг < Hg < Fe < Ni < Co < Cu < Zn < Sr< Cd < Ba < Pb.

   Основные области применения пектинов связаны с их функциональными свойствами. Гелеобразующая способность используется в кондитерской и консервной промышленности при изготовлении желейных кондитерских изделий и гелеобразной фруктово-ягодной консервной продукции. К ним относятся различные желе, мармелады, зефиры и пастила, джемы, конфитюры, а также фруктовые начинки. На способности пектиновых молекул образовывать комплексы с белками основано их использование при получении кисломолочных продуктов (йогуртов и т. п.). Молекулы высокоэтерифициро-ванных пектинов могут образовывать пектин-протеиновые комплексы. При рН 4,0—4,2 они вступают, например, во взаимодействие с молекулами казеина молока, что приводит к изменению общего заряда белковых молекул и обеспечивает их физическую стабильность в кислой среде.

   Технологическая функция стабилизатора проявляется молекулами пектина в таких дисперсных пищевых системах, как мороженое, майонезы, соки с мякотью. Аналогично некоторым видам модифицированных крахмалов пектины можно использовать в качестве низкокалорийного заменителя жиров в эмульсионных продуктах (наливные маргарины, майонезы).

   Содержание пектинов в пищевых продуктах составляет от 0,03 до 2,0 %, т. е. от 0,3 до 20 г на 1 кг изделия.

   В последнее время пектины широко используют в качестве профилактических средств для групп населения, проживающих в зонах риска отравления тяжелыми металлами и радионуклидами, благодаря способности низкоэтерифицированных пектинов образовывать комплексные соединения с ионами цинка, свинца, кобальта, стронция, радионуклидами.

   Кроме того, будучи растворимыми пищевыми волокнами, пектины являются физиологически ценными пищевыми добавками (функциональными ингредиентами), присутствие которых в пищевых продуктах традиционного рациона способствует улучшению состояния здоровья. Специфическое физиологическое воздействие растворимых пищевых волокон связано с их способностью снижать уровень холестерина в крови, нормализовать деятельность желудочно-кишечного тракта, связывать и выводить из организма некоторые токсины и тяжелые металлы. Рекомендуемое суточное потребление пектиновых веществ в рационе здорового человека составляет 5—6 г.

   Все перечисленные свойства пектинов позволяют отнести их к ряду важнейших физиологически ценных пищевых добавок.

   Пектины (Е440а) — добавки природного происхождения, совершенно безвредны, их можно использовать в неограниченных количествах. Суточная доза амидированных пектинов (Е440b) регламентируется и не должна превышать 25 мг на 1 кг массы тела.

   Как и все прочие пищевые добавки, коммерческие пектины должны соответствовать определенным показателям качества, которые регламентируются официальными требованиями к чистоте этих продуктов. Предписания международных организаций включают 10—11 химических показателей, главным из них является содержание га-лактуроновой кислоты, характеризующей содержание собственно пектина, которое должно быть не менее 65 %. Ко второй группе химических показателей, определяющих качество коммерческих пектинов, относится содержание тяжелых металлов (меди, цинка, свинца). Например, содержание свинца в пектинах не должно превышать 10 мг/кг продукта. Для низкоэтерифицированных пектинов, полученных путем аммонолиза, регламентируется степень амидирования, которая не должна превышать 25 %.

   В соответствии с СанПиН 2.3.2.560—96 наряду с химическими показателями в стандартном пектине следует определять показатели микробиологической безопасности, по которым осуществляют контроль на отсутствие патогенных микроорганизмов.